УДК 621.715

ИССЛЕДОВАНИЕ ТОЧНОСТИ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ВЫТЯЖКОЙ С ИСПОЛЬЗОВАНИЕМ FDM ИНСТРУМЕНТА

Тихонова Елизавета Алексеевна

Магистр 1 года, кафедра «Технологии обработки материалов» Московский государственный технический университет им. Н.Э. Баумана

Научный руководитель: М.А. Серёжкин, кандидат технических наук, доцент кафедры «Технологии обработки материалов»

Холодная листовая штамповка – это один из самых распространённых методов обработки давлением. В основном листовая штамповка применяется в условиях производства крупносерийного применением c инструмента, изготовленного из штамповых сталей с последующей химико-термической обработкой. Возможности применения холодной листовой штамповки в условиях опытного или единичного производства ограничены. Данные недостатки можно исключить, заменив материал инструмента на термопласт, а инструмент изготовить методом FDM (моделирование послойным наплавлением термопласта – fused deposition modeling). Такой способ даст возможность снизить стоимость изготовления инструмента и сделать холодную листовую штамповку доступной. Основной проблемой использования данной технологии для изготовления инструмента является сложность оценки получаемой прочности FDM инструмента, а также допустимой силы деформирования, от величины которой зависят границы применения инструмента в холодной листовой штамповке. [1,2]

В представленной работе исследуется влияния упругого пружинения FDM штампа на точность изготовления изделий вытяжкой. Эксперимент проводился на жестком штампе. В штамп установили: жесткий инструмент и инструмент, изготовленный с помощью FDM печати. FDM инструментом для вытяжки деталей являлась матрица (рис. 1). С помощью листовой штамповки выполнялась вытяжка деталей (рис. 2-3) из материалов: алюминий AД1, медь M3 и сталь 20X13.

Рис. 1. Матрица, изготовленная с помощью FDM печати

Рис. 2. Детали, полученные с помощью жесткой матрицы

Рис. 3. Детали, полученные с помощью FDM матрицы

В ходе проведения эксперимента были получены результаты, которые представлены в таблице 1 и построены диаграммы отклонений (рис. 4 - 6).

Таблица 1. Результаты измерений диаметра полученных деталей	из алюминия, меди и
	стали

№ места измерения	Диаметр изделия, полученный с помощью жесткой матрицы			Диаметр изделия, полученный с помощью FDM матрицы		
1	Алюминий	Медь М3	Сталь	Алюминий	Медь М3	Сталь
	АД1		20X13	АД1		20X13
1	65,72	65,88	66,23	65,82	65,95	66,01
2	65,68	65,96	66,01	65,73	65,71	66,04
3	65,82	65,99	66,15	65,52	65,96	66,41
4	65,85	65,93	66,01	65,85	66,18	65,92
5	65,97	65,96	66,06	65,96	66,15	65,92
6	65,97	65,98	66,22	66,13	66,19	65,82
7	65,79	66,03	66,14	65,86	66,11	65,89
8	65,70	65,90	66,19	65,97	66,03	65,84

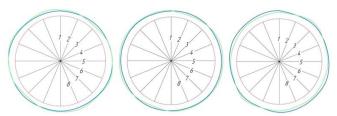


Рис. 4. Диаграммы отклонений от номинального диаметра деталей из алюминия, меди и стали (— - жесткая матрица, — - FDM матрица)

Согласно ГОСТ Р 52630-2006 отклонение внутреннего (наружного) диаметра в цилиндрической части отбортованных днищ и полусферического днища допускается не более $\pm 1\%$ номинального диаметра. Номинальный диаметр полученных изделий равен 65 мм, тогда допустимое отклонение составляет ± 0.65 мм. В таблице 2 представлены отклонения от номинального диаметра для деталей из алюминия, меди и стали, изготовленных с помощью жесткой и FDM матрицы.

Таблица 2. Отклонения от номинального диаметра для деталей из алюминия, меди и стали

	Алюминий АД1	Медь М3	Сталь 20X13
Жесткая матрица	0,7 мм	0,71 мм	0,75 мм
FDM матрица	0,8 мм	0,75 мм	0,8 мм

Для повышения точности штамповки нужно учитывать размер FDM инструмента. В связи с тем, что 3D печать имеет погрешность, и происходит деформация напечатанной детали, поэтому одним из главных решений будет изменить номинальный размер FDM матрицы, уменьшить диаметр до 64 мм.

Литература

1. *Nakamura N, Mori K, Abe Y (2020)* Applicability of plastic tools additively manufactured by fused deposition modelling for sheet metal forming. Int J Adv Manuf Technol 108(4):975–985.

2. Аксенов Л. Б., Кононов И. Ю., Колбасников Н. Γ . Напряжённое состояние пластиковых штампов, изготовленных 3D-печатью, при гибке тонколистового алюминия. 2020.